B.Sc. DEGREE EXAMINATION - MATHEMATICS

 FIRST SEMESTER - NOVEMBER 2014MT 1503 - ANALYTICAL GEOMETRY OF 2D, TRIGNOMETRY AND MATRICES

Date :10/11/2014
Dept. No. \square Max. : 100 Marks
Time : 01:00-04:00

$\underline{\text { PART - A }}$

Answer ALL questions:
 $(10 \times 2=20)$

1. What is the expression for $\tan n \theta$ in terms of $\tan \theta$.
2. How can you group the pairs in the expansion of $\cos n \theta$ when n is odd and even?
3. Complete the relation:

$$
\begin{aligned}
& \operatorname{Cosh}^{2} x+\operatorname{Sinh}^{2} x= \\
& \operatorname{Cosh}^{2} x-\operatorname{Sinh}^{2} x=
\end{aligned}
$$

4. Write the expansion of $\operatorname{Cosh}^{-1} \mathrm{x}$ and $\operatorname{Sinh}^{-1} \mathrm{x}$.
5. Define skew symmetric matrix and give an example of it.
6. Show that $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is orthogonal.
7. What is the condition for the lines $1 x+m y+n=0$ and $1_{1} x+m_{1} y+n_{1}=0$ to be conjugate?
8. Write the pole of the line $a x+b y+c=0$ with respect to the parabola $y^{2}=4 a x$.
9. Define rectangular hyperbola.
10.Define polar equation of a conic.

$\underline{\text { PART - B }}$

Answer any FIVE questions:
11. Expand $\operatorname{Cos} 6 \theta$ in terms of $\sin \theta$.
12.If $\frac{\tan \theta}{\theta}=\frac{2524}{2523}$, find θ approximately.
13.If $\sin (\mathrm{A}+\mathrm{iB})=\mathrm{x}+\mathrm{iy}$, prove that $\frac{x^{2}}{\operatorname{Cosh}^{2} B}+\frac{y^{2}}{\operatorname{Sinh}^{2} B}=1$ and $\frac{x^{2}}{\operatorname{Sin}^{2} A}-\frac{y^{2}}{\operatorname{Cos}^{2} A}=1$.
14.Find the value of $\log \frac{1+\operatorname{Cos} \theta+i \operatorname{Sin} \theta}{\operatorname{Cos} \theta-1+i \operatorname{Sin} \theta}$.
15. Find the eigen values of $\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$.
16. Find the locus of the poles of all tangents to the parabola $y^{2}=4 \mathrm{ax}$ with respect to the parabola $y^{2}=4 b x$.
17.Find the locus of the midpoints of the chords of the parabola which subtend a right angle at the vertex of the parabola.
18. The asymptotes of a hyperbola are parallel to $2 x+3 y=0$ and $3 x-2 y=0$ its centre is at $(1,2)$ and it passes through the point $(5,3)$. Find its equation and its conjugate.

PART - C

Answer any TWO questions:

$$
(2 \times 20=40)
$$

19. (a) Prove that $64\left(\operatorname{Cos}^{8} \theta+\operatorname{Sin}^{8} \theta\right)=\operatorname{Cos} 8 \theta+28 \operatorname{Cos} 4 \theta+35$.
(b) Prove that $\operatorname{Cos} 8 \theta=1-32 \operatorname{Sin}^{2} \theta+160 \operatorname{Sin}^{4} \theta-256 \operatorname{Cos}^{6} \theta+128 \operatorname{Sin}^{8} \theta$.
20. (a) If $\cos \alpha \cosh \beta=\cos \phi \sin \alpha \sinh \beta=\sin \phi$ Prove that $\sin \phi= \pm \sin ^{2} \alpha= \pm \sinh ^{2} \beta$.
(b) Reduce $(\alpha+i \beta)^{x+i y}$ to the form $\mathrm{A}+\mathrm{iB}$.
21. Diagonalize the matrix $\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$.
22. (a) Show that the locus of the intersection of tangents to $y^{2}=4 a x$ which intercepts a constant length d on the directrix is $\left(y^{2}-4 a x\right)(x+a)^{2}=d^{2} x^{2}$.
(b) Trace the curve $\frac{12}{r}=4+\sqrt{3} \operatorname{Cos} \theta+\operatorname{Sin} \theta$.
